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Accelerating Convergence 
of Eigenfunction Expansions 

By J. K. Shaw, L. W. Johnson and R. D. Riess 

Abstract. A general procedure is presented for accelerating the convergence of eigen- 

function expansions associated with selfadjoint boundary-value problems. The results 

obtained reduce, in special cases, to certain well-known methods of acceleration, 

including the Lanczos representation. The generality of the procedure allows the user 

to take advantage of structural properties of the expanded function. 

1. Introduction. In this paper we shall be concerned with orthogonal expansions 
00 

(1.1) f=- E akyk, 
k=1 

where the Yk are eigenfunctions of a selfadjoint boundary-value problem on an interval 

[a, b], and where the ak are corresponding generalized Fourier coefficients of f. It is 

well known [3] that such expansions always converge at least in the norm of L2 [a, b]. 
However, depending on smoothness and boundary behavior of f, (1.1) may or may not 

actually represent f(x) pointwise in [a, b]. Moreover, the rate of convergence of (1.1) 

may be so slow that the representation is of little use for purposes of approximating f. 
The purpose of this paper is to develop a modified eigenfunction expansion which 

represents f(x) pointwise in [a, b], and whose coefficients tend to 0 with arbitrary 

rapidity. Given a suitably smooth function f and a positive integer p, we introduce a 

function hp, depending only on f and p, such that 

00 

(1.2) f(x) = hpx+E akyk(X), a < x < b, 
k=1 

with uniform convergence in [a, b], and such that the "modified" coefficients a^k have 

order of magnitude Xk P, where Xk is the kth eigenvalue of the boundary-value problem. 
Since IXkI ? o, as k -- oo, we say that the rate of convergence of (1.1) has been 

"accelerated" by means of (1.2). 
In the context of ordinary Fourier series, the notion of accelerated convergence 

has been studied in some detail. The most familiar result is the Lanczos representation 

of functions in terms of Bernoulli polynomials and trigonometric series (Lanczos [5], 

Lyness [6], Jones and Hardy [4]). This representation for functions f E CP[0, 1], 

p > 1, has the form 
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f(x) = [ (k)()] Bk+(x) +(1 f(t)dt 

(1.3) k=O 

+ 2 E [Ck cos 2kirx + Sk sin 2k7rx], 
k=1 

where Bk is the kth Bernoulli polynomial and where 

ck + isk = ( 
i)P | f(P)(t)(e2klrit - 1)dt, k = 1, 2, 3,. k k (2kiri)P j 

A similar type of representation, which involves only sine terms, has been used by 

Jones and Hardy [4] as an approximation method. This expansion may be written 

p-i 
(1.4) f(x) = 

2 [f (k)(l)Ak(x) + f ( k)(O)Ak(l -X)] ak sin kirx, 
k=O k=1 

where lak = (kr)2p 2f(2P)(t) sin kirtdt, 

and where Ak is the Lidstone polynomial [2] of degree 2k + 1. The derivations of 
(1.3) and (1.4) require no more than integration by parts and using properties of the 
polynomials involved. 

The representation (1.2), which we now proceed to derive, includes (1.3), (1.4) 
and various other representations as special cases. However, the overall approach we 
take still recalls Lanczos' original idea of modification of boundary behavior of the 
expanded function. The essential point of departure is that we are able to pass from 
the method of integration by parts to the more general setting of selfadjointness in 
linear differential operators. 

2. The Generalized Representation. Let n be a fixed positive integer and let L be 
the nth order linear differential operator given by 

Ly = aoy() + aly(n-) + + a y' +any, 

where each a, is a complex-valued function of class Cn-j on the closed interval a < x 
< b, and ao(t) # 0 for t E [a, b]. Suppose we are given linearly independent boundary 
forms 

n 
B1y = E (k -i 1 )(a) Njky(k l )(b), I < j < n, 

k=1 

where the Mik and Nik are complex constants, and let us agree that By = 0 shall denote 
the set of conditions B1y = B2y = = Bny = 0. We shall suppose throughout 
that the eigenvalue problem 

(2.1) Ly =Xy, By = 0 

is selfadjoint; that is, (Lu, v) = (u, Lv) whenever Bu = Bv = 0, where (, ) is the 

usual inner product (f, g) = f' f(t)g(t)dt. Then the eigenvalues {Xk}f of (2.1) com- 
prise a real, countably infinite set with no finite limit point. Denoting by {yk}I the 

corresponding set of normalized eigenfunctions, 

Lyk = XkYkX Byv = 0, Yk112 = 1, 
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the eigenfunction expansion (1.1) may be written 

(2.2) f= E2 (f, Yk)Yk. 
k=1 

To derive the modified version of (2.2), we must consider separately the two 
cases arising from whether or not 0 is an eigenvalue of (2.1). Mainly, the presentation 
we give is for the case in which 0 is not an eigenvalue. To avoid undue repetition, we 

shall simply state the pertinent results for the other case and leave the details of proof 
to the reader. 

Thus suppose first that 0 is not an eigenvalue of (2.1). Then for any fundamental 

system of solutions ePl X eP2, . . . X ,Pn of the homogeneous equation Ly = 0, the rank of 
the (n x n) matrix (BjIok) is n. Therefore, there exist unique functions P1, P2, * . ,Pn 

such that 

(2.3) LPk =O Bipk = 6k, 1 < j, k < n. 

Now define the functions Pn + 1 X Pn + 2.... by the recurrence formula 

(2.4) LpLnk+i= Pn(k-1 )+i' BPnk+i = 

for 1 <j < n and k = 1, 2, 3.... 
LEMMA 1. Let p be a positive integer. Then the functions 

{Pnk+j} 1< < n, O < kSp- I, 

are linearly independent solutions of LPy = Q. Moreover, the unique solution to the 
problem 

(2.5) LPY= O, BILky=Ank+j, 1 j?-n,O?k p- 1, 

is given by 
p-1 n 

y = E Ank+jpnk+ij 
k=O j=1 

Proof It is clear from (2.3) and (2.4) that LpPnk+i = 0 for k = 0, 1, 2, 
p - 1. To prove linear independence let {hnk+j}, 1 < j S n, 0 S k S 

p - 1, be a sequence of constants such that 
p-1 n 

E hnk+ipnk+ = 0. 
k=O k= 1 

If we apply the functional BmLr to this equation, where 1 S m S n and 0 S r 
S p - 1, and use (2.3) and (2.4), there follows 

/-1 n\ 
(2.6) 0=BmLr(0) = Bm( E E hnk+jPn(k-r)+I) = hnr+m- 

k=r j=l / 

Hence the solutions are linearly independent. Consequently, every solution to 
LPy = 0 may be expressed as 

p-1 n 
y = E E ank+,Pnk+i 

k=O j=1 

for certain constants {ak}pn. Arguing as in (2.6), we ag-ply the functional BmLr 
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to the above equation and invoke condition (2.5). This results in Anr+m - 

BmLry = anr+m, and the proof is complete. 
Definition. For each nonnegative integer m, let Dm be the set of all complex 

functions f defi1ned on [a, b] such that (Lkf)(x) and B,Lkf all exist for 0 ? k S m 
and 1 < j S n. 

THEOREM 1. Let p be a positive integer and let f E Dp. Then 

f(x) = hp(x) + gp(x), a < x < b, 

where 
p-1 n 

h (x) = (BLkf) pnk +(x) 
k=O j=1 

and 
00(LPf, Yk) 

gp(x) = : Yk(X). 
k=1 k 

Proof Let hp be the unique solution to the problem 

LPy=0, B.Lky=B.Lkf, I < j<n, 0?k<p-l. 
The existence of hp is assured by Lemma 1. Let gp(x) = f(x) - hp(x), so that 

(2.7) B1Lkgp=0, I<j<n,0<k<p-1. 

Since gp satisfies the homogeneous boundary conditions, it admits the eigenfunction 
expansion [3] 

(2.8) gp(x) = f(x) - hp(x) = E (f - hp, yk)yk(x), a < x < b, 
k=1 

with uniform convergence in [a, b]. By selfadjointness, the coefficients may also be 
written 

(f-hp, Yk) = k l(f- hp, Lyk) 

- X-'(L(f-h ),Yk) = X2(L 2(f- hp),yk) 

-k p(LP(f- hp), Yk) = XkP(LPf, yk) 

Thus (2.8) is equivalent to 

(2.9) f(x) = hp(x) + X X-7P(LPf, Yk)Yk(X). 
k= 1 

Finally, we know from Lemma 1 that 
p-1 n 

hp(x) = (BjLkf)Pnk+J(x), 
k=O j=1 

and this completes the proof. 
The following formula is sometimes useful in calculating the Fourier coefficients 

in (2.9). 
LEMMA 2. Let f G Dp. Then 

p-1 n 
(2.10) X7 (Lpf, Yr) = (f, Yr) - E XT-kB-Lkf(pI, Yr) 

k=O j=1 
forr 1,2, 3... 
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Proof. Let r be fixed. If we take the inner product of the series 
p-1 n 0 

f(x) = p 'i (BILkf)pnk+j(x) + j Xk P(Lpf, Yk)Yk(X) 
k=O j=1 k=1 

with the eigenfunction Yr, we obtain 
p-i n 

(2.11) (f, Yr) = j E (BiLkf)(pnk+j,yr) + XrP(LPf, Yr). 
k=O j=1 

In view of (2.4), we have 

(Pn k +j, Yr) = Xr(Pnk+ j LYr) 

-)Xr (Pn(k-1)+j'Yr) = X72(Pn(k-2)+j,Yr) 

= r k(pi, Yr). 

Substituting this into (2.1 1) results in an equation which is equivalent to (2.10). 
We conclude this section with statements of corresponding results for the case in 

which 0 is a simple eigenvalue of (2.1). For details concerning the theoretical basis of 
this method we refer the reader to a recent paper of the first author [7, Section 5]. 

Thus suppose that 0 is a simple eigenvalue of (2.1) and let y0 be a normalized 
eigenfunction; i.e., 

Lyo = 0, Byo = 0, IIYO12 = 12 

For each fundamental system of solutions epj p2, . . , pn of Ly = 0, the rank of the 
matrix (BDPk)n.1 is n - 1. Since rank is independent of the choice of the uPk, we 
may take ep1 = yo. Further, we may suppose that, after possibly re-ordering the forms 
B1, B2, . . ., Bn, the last n - 1 rows of the matrix are linearly independent. Then, if 
n > 1, there exist uniquely determined functions q2, q3, .- . , qnl such that 

(2.12) Lqk 
= 0, B1qk = 

6k, (qk, YO) =0 

for 2 < j, k < n. Moreover, one can show (see [71 ) that there exist a function q1 and 
a constant c # 0 such that 

(2.13) Lql cyo, Bkql =-5kl, (ql yo)=0 

for 1 S k < n. Define the auxiliary boundary forms {U}In by 

U1 = B1 - [(Blq2)B2 + (Bjq3)B3 + ?+ (Blqn,Bn] 

Uk = Bk, 2 S k < n, 

and note that, by (2.12) and (2.13), 

Uiqk = jk, (qk,yo) = 0, Uqnk+i 0 

for 1 1j S n and 1 < k < 0. Then, in analogy to Theorem 1, one may establish the 
following representation. 

THEOREM 2. Suppose that 0 is a simple eigenvalue of (2.1), let p be a positive 
integer, and let f EL Dp. Then 

f(x) = hp(x) + gP(x), a < x < b, 
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where 
p-1 n 

h,(x) = (f, y0)yO(x) ? E (UiLkf)qnk+j(X) 
k=O j=1 

and 
00 

gp(x) = E XkP(LPf, Yk)Yk(X), 
k=1 

with uniform convergence in [a, b]. 

3. Examples and Applications. The representation f(x) = hp(x) + gp(x), from 
either Theorem 1 or Theorem 2, resolves an arbitrary function f C Dp into a polynomial 
part (typically) and a generalized Fourier series. Since the Fourier series converges 
"rapidly", in the sense that its coefficients have order of magnitude X[-P, then we may 
expect that the truncated expansion 

m 

(3.1) f(x) hp(x) ? E Xjk P(LP f Yk)Yk(X) 
k=1 

will yield a close approximation to f(x). Another notable aspect of this procedure is 
that we are completely free to choose the operator L and the boundary forms B1, B2, 

. Bn which most efficiently utilize the structural properties of the given function f 
To illustrate our results, some specific examples will now be presented. We will 

show that all of the approximation methods in [4] and [6] are special cases of either 
Theorem 1 or Theorem 2, and are attainable by choosing L and B1, B2, . .. appropri- 
ately. Finally, to illustrate further the flexibility of our approach, we introduce a new 
approximation method designed especially for evaluating (approximately) the error 
function. 

Examples. (1) Consider the representation (1.4). The Lidstone polynomials are 
defined inductively by Ao(x) = x and AX(x) = Ak 1(x) Ak(O) = Ak(l) for k> 1 
Let Ly = -y", B1y = y(O) and B2y = y(l). For this data, the eigenvalues of (2.1) 
are Xk = k2ir2, k = 1, 2, 3, ... ; and the eigenfunctions are Yk(X) = V2sink7rx. By 
(2.3) and (2.4) we find p1(x) = 1-x, p2(x) = x, p3(X) = X3/6 x2/2 + x/3, etc. 
In general, P2k+l(X) = (_1)kAk(1 -x) and P2k+2(X) = (_1)kAk(X), k = 0, 1, 2, 
.... By Theorem 1, each f C Dp admits the representation 

p-i 

f(X) E {(- 1)kf(2k)(Q)(_ 1)kAk(1 -x) + (-I)kf(2k)(1)(_ 1)kAk(x)} 
k=O 

{f 1(N sin kirx 
E {11 (-l f (2 p)(t)NF sin kg7t d- } 

and this is equivalent to (1.4). 
(2) To obtain the Lanczos representation, let us recall that the Bernoulli poly- 

nomials may be defined by the relations Bo(x) = 1, B1(l) - B1(O) = 1, B (x) = 

kBk 1(x) and Bk(l) - Bk(O) = 0 for k > 1. This suggests the use of a first order 
operator together with the boundary form B1 y = y(l) - y(O). Now selfadjointness in 
a first order operator requires the presence of the imaginary unit i. Thus we choose Ly 
=iy' and B,y = y(l) - y(O). In this case the eigenvalues and eigenfunctions are 2k7r 
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and exp [2krTix] for k = 0, i1, +2, . . .. In particular, 0 is a simple eigenvalue, and 
we may take yo = 1. Since n = 1, we have U1 =B1. Clearly, 

U1Lkf - ik [f(k)(1) f 
(k)(0)]; 

and a direct calculation shows that ikqk+1 = Bk+lI(k + 1)! for k = 0, 1, 2,. 
Then 

(U Lkf)qk+(x) = [f(k)(1) _ f(k)(0)] Bk+l(x) k.=0 1, . 1 ~~~~~~~~(k ? 1)!' 

Since (f, y0)y0(x) = fr f(t) dt, we see that the function h in Theorem 2 is 

h(x) = -E [f(k)() f(k)(O)] k+ + f(t)dt 
k=O (k ? 1)! Jof)dt 

Lastly, the function gp(x) is given by 

g (x) Pf (2kP)P {o i f(P)(t)e2 kitd e2 krix 

k=-oo;k=kO 
2 

By regrouping terms, one can show that this doubly infinite series reduces to the 
Fourier series in (1.3). We conclude that Theorem 2 reduces to the Lanczos representa- 
tion. 

(3) The three approximation methods studied by Jones and Hardy [4] are also 
special cases of our results. The reader may verify that Method I arises from Theorem 
2 by considering the interval - 1 < x < 1 and choosing Ly = iy' and B1y = U1y= 
y(l) - y(- 1). Method II is the Lidstone representation (1.4), and Method III is 
obtained from Theorem 2 by taking Ly y", B1 y = '(O), U1 y = y '()- A ), 
and B2y = U2y = y(1). 

(4) A representation closely related to the Lanczos representation has been noted 
by Lyness [S]. Here, one employs Euler, rather than Bernoulli, polynomials. This 
method results from Theorem 2 by taking Ly = iy' and B1y = U1y = y(O) + y(l). 

(5) Let E(x) denote the error function with normalized variable, 

E(x)=erf(2x)= 2 f2Xe-t2dt, 0O?x l. 

Jones and Hardy [4] have given extensive tabulations of the error arising from approxi- 
mating E(x) with their Methods II and III (see example (3) above). These methods 
yield an approximate representation of erf(2x) in terms of finitely many polynomials 
and trigonometric functions. In the present example, we introduce an expansion which 
gives the same sort of result. Our calculation of Fourier coefficients is based on the 
trapezoidal rule, using 200 nodal points. The amount of calculation required is thus 
essentially the same as in [4], except that our use of the reduction formula (2.10) and 
integration by parts avoids the evaluation of erf(2x) - hp(x) in the trapezoidal rule. 

Since E(x) is an odd function we have E(2k)(0) = 0, k = 0, 1, 2, .... This 
suggests the choice Ly = -y" and B1 y = y(0), for then we have the simplification 
B1LkE = 0 for all k. At the right endpoint x = I, we select B2y = y'(l), so that 
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B2LkE = (1l)kE(2k+1 )(1), k = 0, 1, 2, . Thus we avoid calculating erf(2). Now 

the boundary-value problem 

-y" = Xy, y(O) = y'(l) = o 
has eigenvalues and eigenfunctions Xk = ((2k - 1)ir/2)2 and Yk(X) = N/2isinf\Xkx, 

k = 1, 2, 3, .... Thus Theorem 1 applies in this case, and the "approximate repre- 
sentation" (3.1) reduces to 

(32 (x )- E ( 1) 1)(')P2k+2(X) + E: (1(E )Yk(X 
k=O k=1 k 

The first few polynomials Pk(X) are 

P1 (X) = 1, P2(X) = XI 

2 X3 
p3(X) =-2 +x XI p4(X) =-6 +2' 

x4 X3 X X5 x3 5x 
p5(X) = 2- 6 + 3 P6(X)= 1 - + -2 etc. 

6436 3' 120 12 24' 

A detailed error analysis of (3.2) is not wholly germane to this paper. Let it suf- 
fice, rather, to point out that there exist constants Mp, p = 1, 2, 3, ..., such that 

1(_ l)p(,E2p), Yk)yk(X)l < Mp, 

for k = 1, 2, 3,.. , p = 1, 2, 3,... , and 0 S x ? 1. A simple application of the 
integral test to the terms omitted in (3.2) then shows that the error in (3.2) is less 
than 

p {2 2p 1 2P- 

2(2p - 1) ir \2m - 

The table below compares, at evenly spaced points in [0, 2], the values listed in 
[1] for erf(x), those calculated from the Fourier sine series (2.2), and those calculated 
from (3.2) with p = 3 and m = 9. The column headed erf(x) lists the values found 
in [1], the column headed (0, 9) contains the results of (2.2) truncated after 9 terms, 
and the column headed (3, 9) gives the results of (3.2) with p = 3 and m = 9. The 
error columns give the deviations of (0, 9) and (3, 9) from the erf(x) column. 

The Fourier coefficients were determined from (2.10), which reduces, in this 
case, to 

X-P(LPE, Yk) = (El Yk) - (P2, Yk) "" k 
~~~i=0 O k 

The values of E'(1), E"'(1) and E(v)(1) are found by direct computation. Similarly, 

(P2 Yk) = X f Xsin(Vkx)dx ((2k - = 1)2 

Finally, a simple integration by parts gives 

(E, Yk) = (2k 1) 2/2r li e-4X coS(VKkx) dx 

These values, used in both (2.2) and (3.2), were obtained by double-precision machine 
computation, using the trapezoid rule with 200 nodal points. 
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x erf(x) (0, 9) error (3, 9) error 

.2 .22270259 .22266823 343.6 x 10-7 .22270264 .5 x 10-7 

.4 .42839236 .42845094 585.8 x 10-7 .42839245 .9 x 10-7 

.6 .60385609 .60379204 640.5 x 10-7 .60385620 1.1 x 10-7 

.8 .74210096 .74214850 475.4 x 10-7 .74210109 1.3 x 10-7 

1.0 .84270079 .84269180 89.9 x 10-7 .84270089 1.0 x 10-7 

1.2 .91031398 .91026847 455.1 x 10-7 .91031406 .8 x 10-7 

1.4 .95228512 .95239414 1090.2 x 10-7 .95228517 .5 x 10-7 

1.6 .97634838 .97617196 1764.2 x 10-7 .97634841 .3 x 10-7 

1.8 .98909050 .98936261 2721.1 x 10-7 .98909053 .3 x 10-7 

2.0 .99532227 .99430658 10156.9X 10-7 .99532216 1.1 x 10-7 
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